Sains Malaysiana 54(1)(2025): 199-210

http://doi.org/10.17576/jsm-2025-5401-16

 

Benzalhydantoin Derivative-Based Inhibitors of Eight Receptor Tyrosine Kinases: Synthesis, in-vitro and in-silico Study

(Perencatan Berasaskan Terbitan Benzalhidantoin bagi Lapan Reseptor Tirosina Kinase: Kajian Sintesis, in-vitro dan in-silico)

 

MUHAMMAD NAUFAL1, IKA WIANI HIDAYAT1, ELVIRA HERMAWATI2, YANA MAOLANA SYAH2 & JAMALUDIN AL-ANSHORI1,*

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km.21, Jatinangor, 45363, Indonesia
2Division of Organic Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

 

Received: 11 July 2024/Accepted: 31 October 2024

 

Abstract

Some hydantoin derivatives have been explored for their potential as anticancer agents by inhibiting receptor tyrosine kinases (RTKs). Benzalhydantoin derivatives were obtained from a two-step reaction: condensation and alkylation reaction. The benzalhydantoin activities were obtained from the enzymatic assay, while the molecular interaction was simulated with molecular docking. Five known compounds (5-9) and two new benzalhydantoin derivatives 10-11 have been synthesized from the appropriate precursors with 4-71% yields. The structures of the compounds were determined mainly by NMR and mass spectral data. From the chemical shift of the H-7’, the configuration of the products 5, 7, 9-11 were determined as Z-isomer, while 6 and 8 were defined as E-isomer.  A bioassay of the seven derivatives at 10 µM against eight receptor tyrosine kinases (EGFR, HER2, HER4, IGF1R, InsR, VEGFR-2, and PDGFR-α and -β) showed that 8 ((Z)-5-8:(Z)-5-(4'-hydroxy-3'methoxybenzylidene)imidazolidine-2,4-dione and 10: (Z)-5-(4'-methoxybenzylidene) imidazolidine-2,4-dione were moderately active against VEGFR-2, with inhibition of 46 and 56%, respectively. In addition, 8 was also active against PDGFR-α and -β, with a 57% inhibition. Further evaluation of 8 and 10 using AutoDock4 showed their binding energy interactions with VEGFR2 (PDB ID: 4AG8) around -6.96 and -7.32 kcal/mol, respectively. Thus, both compounds are potential candidates to be optimized further as inhibitors of angiogenesis blood vessel development.

 

Keywords: Anticancer; hydantoin; N-heterocyclic; PDGFRα and -β; tyrosine kinase; VEGFR-2

 

Abstrak

Beberapa terbitan hidantoin telah diterokai potensinya sebagai agen antikanser dengan menghalang reseptor tirosina kinase (RTK). Terbitan benzalhidantoin diperoleh daripada tindak balas dua langkah: tindak balas pemeluwapan dan alkilasi. Aktiviti benzalhidantoin diperoleh daripada ujian enzim, manakala interaksi molekul disimulasikan dengan dok molekul. Lima sebatian yang diketahui (5-9) dan dua terbitan benzalhidantoin baharu 10-11 telah disintesis daripada prekursor yang sesuai dengan hasil 4-71%. Struktur sebatian ditentukan terutamanya oleh NMR dan data spektrum jisim. Daripada anjakan kimia H-7’, konfigurasi produk 5, 7, 9-11 ditentukan sebagai isomer Z, manakala 6 dan 8 ditakrifkan sebagai isomer E. Bioasai daripada tujuh terbitan pada 10 µM terhadap lapan reseptor tirosina kinase (EGFR, HER2, HER4, IGF1R, InsR, VEGFR-2 dan PDGFR-α dan -β) menunjukkan bahawa adalah sederhana aktif terhadap VEGFR-2, dengan perencatan masing-masing 46 dan 56%. Di samping itu, 8 juga aktif terhadap PDGFR-α dan -β dengan perencatan 57%. Penilaian lanjut 8 dan 10 menggunakan AutoDock4 menunjukkan interaksi tenaga pengikat mereka dengan VEGFR2 (PDB ID: 4AG8) masing-masing sekitar -6.96 dan -7.32 kcal/mol. Oleh itu, kedua-dua sebatian adalah calon yang berpotensi untuk dioptimumkan lagi sebagai perencat perkembangan saluran darah angiogenesis.

 

Kata kunci: Antikanser; hidantoin; N-heterosiklik; PDGFRα dan -β; tirosine kinase; VEGFR-2

 

REFERENCES

Akeng’a, T.O. & Read, R.W. 2007. Synthesis of imidazol[1,5-a]indole-1,3-diones from imidazolidene-2,4-diones. South African Journal of Chemistry 60: 11-16.

Akeng’a, T.O. & Read, R.W. 2005. Synthesis of indoles: Tetrahydropyrazino[1,2-a]indole-1,4-dione and pyrazino[1,2-a]indole-6,13-diones from piperazine-2,5-diones. South African Journal of Chemistry 58: 93-97.

Attwood, M.M., Fabbro, D., Sokolov, A.V., Knapp, S. & Schiöth, H.B. 2021. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nature Reviews Drug Discovery 20(11): 839-861.

Butti, R., Das, S., Gunasekaran, V.P., Yadav, A.S., Kumar, D. & Kundu, G.C. 2018. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Molecular Cancer 17: 34.

Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P.V., Alfieri, R.R., Petronini, P.G. & Mor, M. 2006. 5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorganic & Medicinal Chemistry Letters 16(15): 4021-4025.

Cavazzoni, A., Alfieri, R.R., Carmi, C., Zuliani, V., Galetti, M., Fumarola, C., Frazzi, R., Bonelli, M., Bordi, F., Lodola, A., Mor, M. & Petronini, P.G. 2008. Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines. Molecular Cancer Therapeutics 7(2): 361-370.

Cho, S., Kim, S-H. & Shin, D. 2019. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. European Journal of Medicinal Chemistry 164: 517-545.

Cohen, P. 2002. Protein kinases - the major drug targets of the twenty-first century? Nature Reviews Drug Discovery 1(4): 309-315.

Cohen, P., Cross, D. & Jänne, P.A. 2021. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nature Reviews Drug Discovery 20(7): 551-569.

Dong, Q., Yu, P., Ye, L., Zhang, J., Wang, H., Zou, F., Tian, J. & Kurihara, H. 2019. PCC0208027, a novel tyrosine kinase inhibitor, inhibits tumor growth of NSCLC by targeting EGFR and HER2 aberrations. Scientific Reports 9(1): 5692.

Du, Z. & Lovly, C.M. 2018. Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer 17: 58.

Fischer, A., Smieško, M., Sellner, M. & Lill, M.A. 2021. Decision making in structure-based drug discovery: Visual inspection of docking results. Journal of Medicinal Chemistry 64(5): 2489-2500.

Garofalo, A., Goossens, L., Lemoine, A., Farce, A., Arlot, Y. & Depreux, P. 2010. Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer. Journal of Enzyme Inhibition and Medicinal Chemistry 25(2): 158-171.

Hennek, J., Alves, J., Yao, E., Goueli, S.A. & Zegzouti, H. 2016. Bioluminescent kinase strips: A novel approach to targeted and flexible kinase inhibitor profiling. Analytical Biochemistry 495: 9-20.

Hermawati, E., Ellita, S.D., Juliawaty, L.D., Hakim, E.H., Syah, Y.M. & Ishikawa, H. 2020. Epoxyquinophomopsins A and B from endophytic fungus Phomopsis sp. and their activity against tyrosine kinase. Journal of Natural Medicines 75: 217-222.

Hidayat, I.W., Sumiarsa, D., Permatasari, M., AKania, Riska & Priani, L. 2017. Synthetic studies of bioactive substances of 4-hydroxybenzalhydantoin derivatives. IOP Conference Series: Materials Science and Engineering 172(1): 012024.

Hidayat, I.W., Thu, Y.Y., Black, D.S.C. & Read, R.W. 2016. Biological evaluation of certain substituted hydantoins and benzalhydantoins against microbes. IOP Conference Series: Materials Science and Engineering 107: 012058.

Horikawa, S., Ishii, Y., Hamashima, T., Yamamoto, S., Mori, H., Fujimori, T., Shen, J., Inoue, R., Nishizono, H., Itoh, H., Majima, M., Abraham, D., Miyawaki, T. & Sasahara, M. 2015. PDGFRα plays a crucial role in connective tissue remodeling. Scientific Reports 5(1): 17948.

Jangir, N., Poonam, Dhadda, S. & Jangid, D.K. 2022. Recent advances in the synthesis of five- and six-membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect 7(6): e202103139.

Kanaan, R. & Strange, C. 2017. Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease. European Respiratory Review 26(146): 170061.

Konnert, L., Lamaty, F., Martinez, J. & Colacino, E. 2017. Recent advances in the synthesis of hydantoins: The state of the art of a valuable scaffold. Chemical Reviews 117(23): 13757-13809.

McTigue, M., Murray, B.W., Chen, J.H., Deng, Y-L., Solowiej, J. & Kania, R.S. 2012. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proceedings of the National Academy of Sciences 109(45): 18281-18289.

Metibemu, D.S., Akinloye, O.A., Akamo, A.J., Ojo, D.A., Okeowo, O.T. & Omotuyi, I.O. 2019. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egyptian Journal of Medical Human Genetics 20: 35.

Modi, S.J. & Kulkarni, V.M. 2019. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Medicine in Drug Discovery 2: 100009.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30(16): 2785-2791.

Mudit, M., Khanfar, M., Muralidharan, A., Thomas, S., Shah, G.V., van Soest, R.W.M. & Sayed, K.A.E. 2009. Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorganic & Medicinal Chemistry 17(4): 1731-1738.

Naufal, M., Hermawati, E., Syah, Y.M., Hidayat, A.T., Hidayat, I.W. & Al-Anshori, J. 2024. Structure-activity relationship study and design strategies of hydantoin, thiazolidinedione, and rhodanine-based kinase inhibitors: A two-decade review. ACS Omega 9(4): 4186-4209.

Peng, F-W., Liu, D-K., Zhang, Q-W., Xu, Y-G. & Shi, L. 2017. VEGFR-2 inhibitors and the therapeutic applications thereof: A patent review (2012-2016). Expert Opinion on Therapeutic Patents 27(9): 987-1004.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H. & Ferrin, T.E. 2020. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science 30(1): 70-82.

Raap, J., Nieuwenhuis, S., Creemers, A., Hexspoor, S., Kragl, U. & Lugtenburg, J. 1999. Synthesis of isotopically labelled L-phenylalanine and L-tyrosine. European Journal of Organic Chemistry 1999(10): 2609-2621.

Reddy, Y.T., Reddy, P.N., Koduru, S., Damodaran, C. & Crooks, P.A. 2010. Aplysinopsin analogs: Synthesis and anti-proliferative activity of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-diones. Bioorganic & Medicinal Chemistry 18(10): 3570-3574.

Roskoski, R. 2024. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacological Research 200: 107059.

Sallam, A.A., Mohyeldin, M.M., Foudah, A.I., Akl, M.R., Nazzal, S., Meyer, S.A., Liu, Y-Y. & Sayed, K.A.E. 2014. Marine natural products-inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Organic and Biomolecular Chemistry 12(28): 5295-5303.

Sun, X., Xu, S., Yang, Z., Zheng, P. & Zhu, W. 2020. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: A patent review (2014-present). Expert Opinion on Therapeutic Patents 31(3): 223-238.

Teli, G. & Chawla, P.A. 2021. Hybridization of imidazole with various heterocycles in targeting cancer: A decade’s work. ChemistrySelect 6(19): 4803-4836.

Thenmozhiyal, J.C., Wong, P.T.-H. & Chui, W-K. 2004. Anticonvulsant activity of phenylmethylenehydantoins: A structure-activity relationship study. Journal of Medicinal Chemistry 47(6): 1527-1535.

Tirado-Rives, J. & Jorgensen, W.L. 2008. Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation 4(2): 297-306.

Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S. & Hou, T. 2016. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics 18(18): 12964-12975.

Xing, L., Klug-Mcleod, J., Rai, B. & Lunney, E.A. 2015. Kinase hinge binding scaffolds and their hydrogen bond patterns. Bioorganic & Medicinal Chemistry 23(19): 6520-6527.

Yusuf, M., Hardianto, A., Muchtaridi, M., Nuwarda, R.F. & Subroto, T. 2019. Introduction of docking-based virtual screening workflow using desktop personal computer. Encyclopedia of Bioinformatics and Computational Biology. Elsevier. pp. 688-699.

Zayed, M.F. 2023. Medicinal chemistry of quinazolines as anticancer agents targeting tyrosine kinases. Scientia Pharmaceutica 91(2): 18.

Zegzouti, H., Zdanovskaia, M., Hsiao, K. & Goueli, S.A. 2009. ADP-Glo: A bioluminescent and homogeneous ADP monitoring assay for kinases. ASSAY and Drug Development Technologies 7(6): 560-572.

Zhao, Z., Wu, H., Wang, L., Liu, Y., Knapp, S., Liu, Q. & Gray, N.S. 2014. Exploration of Type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chemical Biology 9(6): 1230-1241.

 

*Corresponding author; email: jamaludin.al.anshori@unpad.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next